DRAFT INTEANATIONAL STANDARD 30,015 10110-5

SOFTE B Secratanat
T 172/3C 1 DI
Jobng DeQins on Womng terrimanes on
STERMATIIRAL ORCARTATION FOR G TARZARDILA TION » ME ML 4 AR AR QPP Lot 14508 CKD ST APTHI LI M- DRGLN L THIN 1757 44 TIDAARE BE AIRW ALIS A TR
¥
L]

Optics and optical instrumenis - Preparation of drawings for optical
elements and systems - Part 5: Surface form tolerances

=
FHIS GOCUMENT IS A QRAFT CIRCULATED FOA COAMAENT b abfidual if 15 THEAEFORE SUBIECT TO CHANGE AMD A2% udn'-'sr:s;smrc}rc; n.s L
IMTERRATICNAL STANDEAD UMTIL PUBLISHED AS SUCH /
J IN-BDDITICN 70 THAIA £ 2LUATION . A% EEMG ACCIPTAGUE SOR (ususTRAL TECHMWLOGIDAL COMMEACIAL 253 USEM MURPDSIS, DRAFT

INTERNATIGNAL STANDARDS MAY ON OCCASION HAVE TO BE CONSICERED W THE LIGHT OF THER POTENTIAL TO 2ECOME STANDWRDS TO WHICH
FEFRAENCE MAY HE MADE £§ MATICNAL AEGULATIONS

B e Edan
Ak Lpvis! gy

PDF CfF4#i[H] "FinePrint pdfFactory Pro" i A G ww. Fineprint.com.cn

Ry ST



http://www.fineprint.com.cn

1 Sropea

This International Standard appl'l.es to the presentation of design and functional
a requirements for optical elements in technical drawings used for manufacturing
and inspection.

This part of the Standard gives rules for the indication of the telerance for sur-
face form. |t is complemented by Anmexes 1 through 3. Annexes 1 and 2 contain
instructions for the determination of the amounts of different surface form devia-
Anrex 3 addresses the physical effects of

tion types for given optical surfacss.
. rms surface dewvistions.

This part

of the

to bBe noted that

notes 2] and 3) are respected,

Standard  applies

ka

spharical

surfaces;
it may alse be applied to aspheric surfaces.

provided

that

foot-
[}t is

150/D1S 10110 Part 12 allows the surface form tolerz-ice for

aspherie surfaces to be specified without reference to this part of the Standard.)

2 Hormative references

The following standards contain provisions which, through reference in this text,
constitute provislens of this Internatienal Standard. At the time of publication,
the editions indicated were valid. All standards are subject to revision. and par-
ties to agreements based on this Internaticnal Standard are encouraged to inve-
stigate the possibility of applying the mest recent editions of the standards indi-
cated below. Members of IEC and |50 maintain registers of currently valid Inter-
national Standards.

Optics and opticzl instruments - Preparstion of drawings
for optical elements and systems - Fart 1: Gensral

1S0/DIS 10810 Part 1

Optics and optical instruments - Preparation of dra.wings
for optical elements and systems - Part 10: Table repre- 3
senting data of a lens element >

ISO/DIS 10110 Part 10

1SG/DIS 10110 Part 11 Optics and optical instruments - Preparation of drawings
. for optical =lements and systems - Part 11: Mon-toleran-
ced data g '\

Optics and optical instruments - F"reparatinn. of drawings
for optical and 5}-’ stem= = PFart 12: Aspheric
=i surfaces Sy

ISOfDIS 10110 Part 12
elaments

3

=1

_Def_]‘l'l_lt!un$

Surface fur;"r..\ deviat]on' ’s:

E-urfa'l:e ft:-rm dewatlﬂn

ah et

is

L

lhe

leFErEnce b-:u-.-een the ﬂptICH| surface under test z

“surface, measured perpendicular . to the’ thﬂﬂrﬂtlﬂﬂ"'_ :

) 3Hd the nummal T.h-eureth:al
7 e, i i ”‘,r'L parallel to.the surface
:u%;im :
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purposes, the dasired theoretical surface may be represented by a test glass,
interferemetric reference surface, or other measuring device of sufficient accu-
racy. 5

3.2 Peak-to-valley [PV) difference and peak-to-valley [PV]) value

The pesk-to-valley |PV) difference between twe surfaces is equal to the maximum
distznce minus the minimum distance between the surfaces. If one of the surfaces
= iz 'a theoretical surface, it i2 possible tkat the surfacss cross. in which case the
minimum distance beiwesn the surfsces is 2 negative number; the sign must bs

taken into account in computing the PV difference.

The PV value of a surface is the PV difference between the surface and the pla- i
nar surface which best approximates it. 3 5

< :

S e T LA

3.3 5 i:f‘inge spacings, wavelength

The surface form deviation is te be specified in "fringe spacings". One fringe i
spacing is a distance equal to one-hzif the specified light wavelength. ;
Unless etherwise specified, the wawvslength is that of the green spectral line of
mercury. 586.07 nm.

Specifications mey be converted from one refsrence wawvalength to another using
the formula:

[Mo. of fringe spacings at Az) = [Mo. of fringe spacings at ?&ﬂ___f_h :
A ) cedle ! 7, j £ Ifiss » - 1 "':_“‘_- P

i [

R TYFﬁ- of 51.1rfac:e farm deviation

=igE SRS HiE Tk LR ST SRR S R AT
. The surface forfn mleranmas are |nd:cated by speclflcatlon m" T.he maximum permla-
- sible amounts of sagitta error, irregularity, and rutat:ona]ly symmetﬂc |rregula“_

rity. These quantities are defined below. - o ALl A ; ! e i
3.|=t._1 Sag]tm err'u-'r 1 :

A AR e T R B el ) e
Eaaltta error resuits fr'::lm the test surfal:e hElViI"ig a, rad!us Df :urvature dlffer'erlt-

1444 BRL
Tp - 5

from the spemf’ed radms R T T oI b I Pl T L S _-=_~ £ T Sy

In nrder ‘Lo determane the sagntta error-of @ ﬁphermal ﬁurfat:e. it is first® ﬂﬂ&s-.: i
Eary tc- d&termlne the sphermal surface which bF'.Et apprummates thﬂ surfar:e un=
“der test. Thl-" appmxlmatlng spherlcal surface |5 def’ned as_ thar. spheru:ai SUr
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minimum.'? [The rms deviation is defined in Annex 1.) The wvalue of the sagitta
error is the peak-to-valley difference between the desired theoretical surface and *
the approximating spherical surface.®’

Annex 1 gives one method for determining the amount of sagitta error of a given
5 surface using digital interferogram analysis technigues.

Methods by which the ameount of sagitta error can be estimated using test glasses
. or visual interpretation of interferagrams are given in Annex 2.

Lt

B2 drregularity

The irreguiarity of a nominaily spherical ﬁur‘ace is a measure of its departure-
from sphericity.

The wvalue of the irregularity of an optical surface is equal to the peak-to-wvalley
difference between the optical surface under test and the approximating spherical
surface (ses subclause 3.4,1). The theoretical surface defined by the difference
betwean these two surfaces will be referred to as the |rregular|t~,r functmn.’:'

i T et e L Tl 1
F-.nne:-: 1 gwes ‘ane methnr.i for deter’mmmg the amnunt nf Irregmar:tf uf a gwen
surface using digital Interferogram analysis technigues.

Methods by which the amount of irregularity can be estimated using test glasses
or wisual interpretation of interferograms are given in Annex 2.

"

2 s Rotationally symmetric irregularity

. Surfaces which are rotationally: symmetric.t but® do- not have. the desired:shape,
are said to have rotationally symmetric irregularity. This error is the rotationally
symmetric part of the irregularity function [see subclause 3.4.2).

o

In order to determine the value of the rotationally symmetric irregularity, it is
first necessary to determine the rotationally symmetric aspheric surface which
best approximates the surface under test.: This approximating surface is defined
. as that rotationally symmetric surface for which the rms difference ta the irrequ-

st t e Ell R PR e PR
T o B e R e -

1} For non=circular test areas, the remarks givem in subclause 3.6 apply.

2) 17 the desired theoretical surface is aspheric, it is mecessary to defermine
the total” interferometric error func‘tion which, is defined as the difference
between the actual surface and the de51rﬂd theoretical surface." The approxi-

 mating spherical surface is defined as that sphercial surface which best

“approximates the’ total® interfaremetric*error: function” The sagitta error.js:
then equal te the P'J va‘rue af tha apprnmmatmg spherica'l surfacess. s~f imaub

L R 7 t"m CES]!‘ECI the-::r'etma‘l sur'fa-r.e 15 asphemc, then the 1.|r'|-e5|u1ar"lt_y.L funce

----;-'.tinn is defined. as. the d‘ifferen:e batween the. tnta] interferometric error

~ functian and t"ae appmﬂmatmg spherlcal surfa.:e {see funtnntﬂ 2)¥i The irre— ;

= oy ..,.h_‘?...i._h

gu'laru._,r EX the A 'u.ra?ue ‘of! the 1rregu]ar1tf functmn"’- R e
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larity Ffunction is 2 minimum''. The wvalue of the rotationally symmetric
irregularity is the PV wvalue of the approximating aspheric surface.

Because the rotationally symmetric irregularity is only a part of the total irregu-
larity, Its wvalue cannot exceed that of the irregularity.

Annex 1 gives one method for determining' the amount of retaticnally symmetric
irregularity of a given surface using digital interfercgram analysis technigues.

Metnods by which the amount of rotationally symmetric irregularity can be esti-
> matzd using test glasses or wisual interpretation of interferograms are given in

Annsx 2.

3.5 Types of root-mean-square (rms) residual deviation
.} Several types of rms residual deviation are defined below. Each type represents
the root-mean-squars value of the function remzining after the subtraction of
certain specified surface deviation types.. The amaunt of each type of deviatien to
be removed is that amount which minimises the rms residoal deviation |The rms
deviation is defined mathematically. in Annex, 1. Yosacn.s e e ;

-

A 2 - s

R e e o e e o e . ;|
The value of the rms residual devistion of a given optical surface cannot be
determined visually, and digital techniques are therefore required. g ;

3.5.1 Total rms dewviation, RM5t
The total rme devigtion iz defined as root-mean-sgquare differsnce between the

cptical swrface_under.test and the nominsl thearetical spherieal surface, without
subtraction of any surface form deviation types. -iz.os wnn * % clive wi snikaas

j,‘r Annex 1 g'we;s. methed fer the calculation ‘of the value of RMSt for a gi've'n.'ab't'lcal
surface.

“w

. 3.5.2  Rms irregularity, RBMSi .. o .o - . I 1O i
The rms irregularity is defined as the root-mean-square difference between the
optical surface under test and the approximating spherical surface {ses subclause
3.4.1). This is equivalent to the rms wvalue of the function remaining after the
spherical - approximating surface defined in subclause 3.%.1 has been subtracted
fram the total surface form deviation... -~ . . L Kt h

S i

Annex 1 gives cne method for the calculatian, of. the value of RMSi for.a given
optical surface.” " : '
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3.5.3  Rms asymmetry. RMSa

The rms asymmetry is defined as the root-mean-square value of the difference
between the optical surface under test and the approximating aspheric surface
see subclause 3.4.3]. This is equivalent to the rms walue of the function re-

g maining after removal of sagitta error and non-spherical, ratationally symmetric
error from the total surface form deviation.

Annex 1 gives method for the ealculation of the value of RMSa for a given optical
surface.

3.6 Mon-circular test areas

For non-circular test areas, the peak=ta-valley [PY) and root-mean=sgquare [RM3)
values given in subclause 3.4 are to be calculated within the actual test ares
cnly. It is important to note that for non-circular test areas, the spherical sur- F
face " which minimizes the rms difference to the. surface under - test

{subclause 3.4.1) is not the spherical part of an approximating surface ‘which’ iz

sspheric::-Alss, “the retaticnally symmetric surface which minimizes the rms diffe- -3
rencg to the irregularity function (subclause 3.4.4) is fot’ the rotationally’ sym- s
matric part of an spproximating surface which is not rotationally symmetrigt- =7 T

4 Specification of tolerances for surface form deviation
The maximum permissible values faor sagitta error, irregularity, and retationally
symmetric irregularity are to be specified in units of fringe spacings.

It a specification is to be given for one or mare rms deviation types. this is to
be done in units of fringe spacings. It is to be noted: that specification of 'a tole-
rance for an rms deviation type requires that the surface be tested with a' digital
interferometer, J ' (R e i e _;l

*= It.is not necessary that tolerances be specified for all types of surface devia-
tions, -~ o ; s e S o e e SRR s R

. N T pndiesiag e E S G IS g

The surface form tolerance is indicated by a code number and the indications of
the tolerances for sagitta error, irregularity, nen-spherical rotationally Symmatric
errar and rms deviation types, as appropriate, SR e e

WET e

EdbdiE=d €

The code numbsr for surface form talerance is 3/, *
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The indication shall kave one of the three forms:

. 3/A[B/C),
or
3AIBIC) RMSx < D [where [x) is one of the letters t. 1, or al,

or
3/- RMSx € O (where [x) iz one of the letters v, i, or a).

The guantity A is either:

1] the maximum permizsible sagitta error expressed in fringe spacings. as
defined in subclause 3.41%!

ar
2] a desh |-] indicating that the total radius of curvature tolerance is .
given in the radius of curvature dimension [not applicable for planar

surfaces].
The quantity B is either:

1) the parmlsslb!e F“I." value Gf |rr'eg1.llar|'ty, E:r.pressed in fringe spacings.
. as defined in suhc[ause 3.4.7 | :

(=] g e d
2] a dash E-‘J indicating that no expﬁcit irregularity talerance is given.

The quantity C is the permissible rotationzily symmetric irregularity expressed In
fringe spacinge, as defined in subclause 3. 4.3, If no tolerance is given the divi-
sor line |/) is replaced by the final parenthesis, i.e. 3/A(B]).

If me tolerance iz given fer all thres devigtion types. then A. B, C. the divisor
lime [/} and the parenthesis are replaced by a single dash (-}, i.e., 3/-.

: The quantity D is the maximum permissible value of the rms guantity of the type

{_}: specified by [x), where [x) is one of the letters t, i. or a. These deviations are
defined in subclause 3.5. The specification of more than one type of rms devia-
tion is allowed, see example 5.

The surface form tolerance indicated 2s described sbove applies to the optically
effective ares, except when the indication is" to éppky' 'r.r.f a smaller test field for

all possible positions within the dptically effective area” In’ this case: the diameter f
f the test field =hall be appended to the telerance indication as follows:

3/A[BIC), RMSx < D [all ...} ,

|ses” example 3).

Sgs Fan s - |
B by e B i e Tl G AL T e TS L] 2 :
4]- It i often *he casa that tHe tnlea’ance for the sagitta arror. is calculated Ty
" by. converting only part’of the toclerance shown. against: the redius of curva- _' e b
_:@_t_qrn tulerance ibtu 2 tuleranca fc-— the sagitta arr:-r accnr:m.nq to suh— e lma !
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5.2 Location

The indication shall be shown in connection with a leader to the surface to which
it refates and will be associated with centering errors and surface imperfections.
An example of such indication 15 given in the annex to IS0/ D15 10110 part 1.

Alternatively, for lens elements, the indication may be given in a table according
to 1SO/DIS 10170 part 100

T two or more optical elements are {0 be cemented [or optically contacted], the
surfacz form tolsranges given for thes individual slaments apply alse for the sur-
faces of the sptical sub-assembly, i.e. after cementing lor optically contacting).
unless otherwise specified. Sez 150/D15 10110 part 1: Ceneral, subclause 4,8.3.

h.3 Relationship between segitta error tolersnce and radius of curvature
tolerance

To determine the number of fringe spa:mgs mrrespandmg to a d:men5|ona1 radius

of curvature tolerance. the following formula may be used, pruv'ldEd that the_ i

rat1n % is small:

& - 5 ¥ 5 |
If the ratis T = zmall, this farmula may be approximated by [

- AT B S s e = :
a AR ’
N_- [ZR] g J\. . _J'
whera.: ; _
N . is the maximum permissible number of fringe spal:mgs, e
el __:5 tha r'adlus of curvature, ..., e ;
AR i the dimensional radius of cur"urature tu]eran:e,

B is the dismeter of the test area, and
7 .. A& is the_wavelength {normally, 546,07 nm).

G Examples of tolerance indications

(SRS bR R o
: s 2

Example 1:° i T Gl e

= The mieran-:e for saéttta error is 3 frmge spacmgs The |rreguiarlt'}l' may not ex-
.:ee:! 1 frmge spacing D dns aan e o] 2
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part 3  Dage &

Example 2: 3f5(=} RMS| < 0.05.

The telerance for the sagitts error is 5§ fringe spacings. Mo specific tolerance iz
given for irregularity or rotatienally symmetric irregularity. but the rms value of
the irregularity may not exceed 0,05 fringe spacings.

Example 3: 3/301/0.5). fall @ 20).

The tolerance or the 2fagitta error t2 3 fringe specings. The total irreqularity
may not execsed 1 fringe spacing., The rotationally symmetric irregularity may not

B grcesed 0.5 fringes spacings. This tolerance applies for all possible test fields af
diameter 20 within the total test area.

Exampls 4: =11~ s

Me specific tolerance for the sagitta errer ls given: the tolerance on the radius
':-) of curvsture is to be taken from the radius of curvature indication®'. The total
irregularity ma:,r not exceed 1 fr'mge spacing.

-:'-\'Z-.-" H i':-‘!'__ s ot i |
Example 53 3o 3f- RMSt < 0,07, RMSa < 0,035, AL |
L .M"-.n"" [ropepy Loy T e 5 i

Mo 5pec.|fu; tnl.er-ance for the sagnt:a errar, lrregularlty_. ar r‘utatmnai}y syrrunetrlc
irregularity s given: the telerance en the radius of curvature is to be taken
from the radius of curvature indication®!: however when the surface is compared
to the desired thearetical spherical surface, the total rms deviation must be less
than 0,07 fringe spacings. and the rms asymmetry less than 0.035 fringe spa-
cings.

-
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AGMINCE X A

Digital interferogram analysis

This annex is informative in nature: it provides a method for the analysis of
surfaces which can be described in terms of -polynomials.

The contents of this annex are important for users of digital interferemeters as
well as for davelopers of software for interferometry.

Examples of surfaces, to which this method dees net apply are surfaces having
interferamatric error functians which ars cens-shaped and surfaces with spatially
localised errors.

Al GCeneral

The amounts of the ‘various types of sur'fac& form deviation are determined
threugh a pruce55 “of sumsswa fitting and remaval of “deviation types; at each
stage the rern:wal crt' one type of sr.n"face_- form deviation exposes the next type aof
dewat]n:n. .

The procedure by which a function of a certain type which "best fits" a certain
eriginal function is the well-known method of least squares. which minimises the
rms error bBetween the original function and the approximation to it. The rms
value of 2 function iz defined in subclau=e A1.4.

Al1.1.1 Effective reference suriace

When testing curved surfaces interferometrically, the surfsce under test is com-
pared with a reference wavefront. The resulting fringe pattern represents the
difference between the surface under test and the projection of the reference
wavefrent onto the surface under test. This projected wavefront will be referred
to as the eﬁectwe reference surface.

b

. The apparent surfan:e Fgure dewatmnﬁ as measured by the interferometer
lincluding the relative tilt between the surface under test and the interfersmetric
reference surface) will be referred to as the wavefront error function Wir.8]).

Al.1.2 delnate S)PEtem

#a o piatie e .
.._..9. i ( L e R

The sur“al:e of tha nptiq[ sur'far;& under test is described in pelar coardinates by
the varizbles r and 8:7the origin of the coordinate system iz the centre of the
test arez, and r is normalised to one at the edge of the test area. For non-cir-
i3 cular. test arsas; the: “reentre! of the-test area refers to its centroid, .and the

radlus of 'Lhe t&:ﬁ: ar'ea rcfers tn the dIEtBnCE:_ fmm the center l',u the mnst dlst‘.:‘m:.'_'
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Varisus approximatiens to the surface are represented as linear combinations of
the polynomials - commonly called Zernike polynomials = Zo{r.@).Z,{r.8). These
combinations are given by corresponding coefficients Co. Cys - ..

Al.2 Procedure

The procedure for finding the ameunts of the wvaricus surface form deviations is
given in subclauses A1.2.1 through A1.2.7. Although this procedure is described
in torms of the Zernike polvnamials (subclause AY1.3). any mathematically equiva-
lant procedurs, based on anothsr s=t of funciion may be ussd: howewver, the
deviations must be detarmined and subtracied in the grdar specified here.

A1.2.1 The total interferometric error

:} To the measured wavefront error function Wir,8), the best fitting plans Plr.8)
= Cula + GqZ, + CzZ 1= found -by the least squares procedure. The total inter-
ferometric error function [TIE} is found by subtra:tmg the best f|t.1.!r|g piane
fram the measured wavefrunt error: ; -

......f. -
. A (£ PR el

T'IEEr 8) = ‘Mr Ei = Plr,E!]

A1.2.2 The total rms devistion RMSt

If the radius of the effective reference surface is equal. to the radius of the
desired ‘thearstical surface, then the total rms deviation |RMSt, subclause 3.5.1)
is equal ta the rms valus of the total interferometric error function TIELr.E1].
The guantity RMSt ean net be directly determined, if effective reference surface

and thecretical surface have different radii. f . !

A1.2.3 The apprn-mmatmg spheru_—c'll surface and the EEIgltta error
Usualw, the Effectwe referenca surfac:e l:!ose]'; matf.hes the sur'fal::e under test. .. 1
In such a case, the difference between these twa spherical surfaces can be ap-
proximated by fitting =2 secnnd-order functmn of the radlal varmhia r to the total

interferometric error funetisn, e s

.P-.pprnxlmat,mg spnr-:re = C;zg

. = - | - S
Er e H e : B ;
PR oL, iz

The sagltta BFFOF lsul:u:!ause 3.4.1) is gwen by r_he expresﬁion.

e

.,5_ b T \.;..l-"

z iSang_.T:a__grjror,! SR EETT

B T

If the rad:us. of the eft‘ectwe referent; wavefrnnt ‘does n-:rt mrrespnnd tﬂ that e h
the neminal theoratical sphenr:al _surface, then the sagitta diffarence hetween b ;
Lhese two _spheres must be adn:ied to the mter-Fernmetrn:all.y determlnEd '-"'-’-HEIIU-EI__':_
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part 5 page 11

error, determined as above. [If the radius of the effective reference surface is
unknown, then the sagitta error of the surface cannot be determined. )

If the diameter of the test area is not much smaller than its radius of curvature,

i the difference between the two spheres wiil contain higher order terms, In order
to distinguish between these and terms which represenmt rotatisnally symmetric
irregularity. a function which more clasely represents the difference between two
spheres must be used in place of ..

A1.2.% The irregularity function

The irregularity functian 1RRE[r.8] is the difference between the total ints-—fero-

metric error function TIE[r.,8) and the approximating sphere. This corre! 3snds
to the function remaining after the sagitta error has been remaoved froa the |

wavefront. 4

IRR(r.8) = TIEIr.8) - C.Z4 .

P {ate sl

A1.2.5 The Ifre!gtli;u-i"ty and the rms irregularity, RMSi S =

The rms irregularity RMSi [subclause 3.5.2) is equal to the rms walue of the o
irregularity function. The irregularity {subclauze 3.4.2) is equal to the peak-te-
valley wvalue of the irregularity funetion. Howewer, same form of smeothing [e.g.
convolution or replacement of the function with a polynomial of sufficient order)
is usually required to remove the effects of isolzted surface defects [scratches,
ete. ), seattering of light from dust particles, znd measurement "noise which are
not part of the surface farm dewviation.

A1.2.6 The® approximating spherical surfsce and the rotationally symmetric
irregularity - d : i it }_)

The'hppmﬂmatiﬁé' '-aspheric surface AAS(r.G) is obtained by a least squares fit
of - a series of: I'D'LEIT.!GI‘IEI]l‘f symmetric Zernike pnlynorma]s to the II'I'E:ngEr'ItY func-
tian FRer,E]‘ s TaT e s L s : : = ;

e . 3 ; et 1)

AAS[r B BT BT ¥ B Tar b T &

In most cases, the spproximation is sufficiently accurate using the four terms
listed a!:u::\.re. H‘tgher nrd&r terms I‘I.‘IEly' be used if necessary.

.valley value af T.hﬁ appmmmatlng aspherie - Sur—face AASIr,B): - This~ ma:.f be
determined in practu:e by ::aln:ul-atmg the walue af AAS[r.8) at discrete points
located on a ?ufflc:enth{ flne grtd and T.aklng ‘Lhe differsnce I:etween the ‘mghest

<R
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Rart 5 pageciZ

A1.2.7 The rm= asymmetry RMSa

The approximating aspheric surface AAS[r.8) Is subtracted from the irreqularity
functisn (IRR{r,8); the rms asymmetry |subclause 3.5.3) is the rms value of the
function which remains. y

£1.2.3 Provisions for aspheric surfaces

The procedurs for the evaluation of interferograms resuliing from aspheric sur-
faces is essentially the seme 2s described sbove; howswver the feotnotes 2 and 3

of subclause 3.4 must be rEEpEL‘;‘.Ed, 1

£41.3  The Zernike polynomials

-‘) The set of polynomials identified by Zeérnike and Nijboer [see ref. [A1.1]) as
being orthogonal in the sense of rms integration over a circular area. are com- [
monly used for- interféregram” analysis. For circular test areas; the analys:s may
be simplified by the erthogonality” properties of these palynomials. * For. mon-circu-
lar puapilsi thesé pu]ynom:als are no longer orthogonal’ and no longer, offer any
advantage over other sets of functions; however, they may <till be used provi-
ded that the analysis techniques given in subclause A1.2 are used.

Zolriml = 13

Z.lr.@) = reocesg
Z:lr.8) = r-sin@ ‘
ri o B A ol
'-Zuir‘:\E‘] = Nrieoszel 0 z gk S

i Zolr, E'] = risinig

5 Z (r.8) = l3 F2 - 2)*r cos®
Z,Ir@] ) l3 r? = 2}*1'. sing
Zalr,B) = Br* -6 r2 +1 i
Eqi'r'..e_i_ = r-cos3g 2 ;
Z,alriB) = rP=sin3d '

 Zubr.®) = 1% r? - 3)'r? cosi®
21;'F,53 = [LI- il"2 o 3]'|"2 5]“28
% hos ie r:l" '3"3 =+ [10 r‘_‘-- 12°rt + 3)'r cosd - T R

20 r8ie 30 ph k12 -
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Ziglr,®) = [5r? = 4) r2-pos30

Leglr.@) = (5 r? - 4] r¥-5in3e \
Zaolr,®) = [15 r™ - 20 r2 + ) r2-cos20

Zalr,8) = [13 ¢ - 20 r2 + §) r2-sin20

Z::0r.@) = 135 P® - 60 r* +30 2 - U] r-cosd

Zoalr.®) = [35 r® - B0 F™ + 30 r2 - 4) r-sing

Zaule,®) = 70 ¢® = 180 r% % 90 r* = 20 1T + 1

Z2i5lr.B) = r®-cosss

Z2alr, @) = r®:sin30
Zozlr.8) = [6 r? - 5} r:cosu@
Z:alr,®8) = [6r2 - 5) r* sinte
Zaalr,@) = (21 r* = 30 r? + 10) r*:cos38 o el
Zsolr.B) = (21 r* - 30 r2 & 10) F+5in36 . %
Z31(r,8) =. (56 r® - 105 r* + 60 r2 - 10) r?-cos20
rZaalFi8) = (56 'v® - 105 FTAE0 2 1 10) r2esinze ¢ -
Z3:(r.B) = [126 ¢™ - 280 r® + 210 r™ - 6O r2 + 5) r-cnsé 3 =0
Zoulr.BY = {136 r® = 280 r® + 210 ¥ - 60 72 + 5) r-5ind
Zaslr. 8] 252 1% = B30 r® + 550 pF - 2900 % 430 £ - 1

Al Root-mean-squares [rms) wvalue of a function

The root-mean-square value of a function f of two wvariables % and y over a given
area A is given by the integral expressicn:

[F {x.5]%cA S
b v _ :

J.o'x-‘l
© 1A

This integral may be approximated by a :nrrespunding summation, provided that -
a sufficient number of data is used.

FMS value =

References:- - i : - il oo e
[A1.1] A discussion of these polynomials ‘and theis p:uper"ias is cr.wen in M
“.Borm and E. Wolf, Principles:of Opties, P'e"gamcn press;: Elrc:sfnrd

-\.:-'
R
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AENNEX 2

Visual interferogram analysis

This annex is informative in nature; it is intended as an aid to understanding
Part & of 1S0O/DIS 10110. The annex is wseful far the interpretation of inter-
ferograms [including fringe patterns seen when using test glasses]. but the
guidelines given below for the estimation of the amounts of the various surface

sarm deviations do not serve ta define these surface form devistion bypes.

AZ.1- Ceneral

The main purpose of this annex is to demonstrate the visual appearance of the
_,,) different form errors; for ease of readibility. only the case of nominally spherical

test. surfaces is deseribed. Aspheric surfaces may alze be visually eua1uated

pr*ﬂ'-nded that fu-om::-tea 2] and 3] uf subc!ause 3.4 are respected TS

This annex- deals exc!usiveiy w‘uth._. the following types of surface form deviation:
sagitfa error, irregularity, and rotationally symmetric irregularity..The' rms”
residual deviation types (described in subeclause 3.5] cannot be determined by
visual inspection.

Subclauses A2.7 and A2.3 describe the analysis of circular test aress. Special
considerations for non-circular test areas ars given in subclauss AZ.2.4,

AZ.1.1 Inter‘ferometnc j U1E

5 me e et ';--'\ It bk * i o ‘-
Twn methnds are Li;éd for Est]matmg the emounts of sagl‘r.‘r,a error and |rregma-
.u],' rity, depending on whether or not the relative tilt between the reference surface i
and the surface under test can be adjusted. The method without tiit is applied
chiefly when using test glaasea and when the surface form deviation is 'Iarge
The method employing tilt is general'ly more accurate.,

_:|__\__- i Tt # AT S e e R

s *"-’= R ek . ik T i

AZ.1.2 Effec.iive reference surface- - -. S ; g

The zagitta error can only be determined if the radius of curvature of the effec-
tive reference-surface is known. When using test glasses, this is equal . to. the -
radlus of the test glass_ itself. When testing curved surfaces whit a non-contact.
interferometer, .the apparent. szgitta error depends on the distance between the. .
test surface and the reference surface. The effective reference surface: is. the:
projection of the reference surface onta the surface under test. Often. the radius
of the effective reference surface is unknewn, and the sagitta error cannot be o T
5 dEtEI‘mlned hgweugr, the |rreguiar':|tw_.r can still be determined. -« g ic L '
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surface, In the following. it is assumed that this is the case. [If this is nat the
case. then the difference between the sagittas of the nominal thesretical surface
and the effective reference surface must be added - taking the cign inte accaunt
- to the sagitta error determined as described below. For this reasan it is neces-
sary to determine whether the surface is concave or convex with respect to the
interferometric reference surface. )

AZ.2 Estimation of sagitta error and irregularity

Usuzlly, the surface form devistion is dominated by sagitiz error andlor by a
kKind of asymmeiry in the sagitta error. In the case of asymmelry, cross-sections
of the surface in different directions show different amounts of sagitta error,
Cther kinds of surface irregularity are possible: the estimation of their amounts
is more difficult. The estimation of the amounts of sagitta error and irregularity
for the commenly occuring cases is described in subclauses A2.2.1 and AZ. PR
and a more general procedure for unusuzl types of irregularity is described in
AZ.2.3. Referenn:e [AZ 'I} contains a more thor‘ough d:scuasmn of 1ntErf-ar‘Dgram

analysis. b R N E £ e S

R ) ERRTE O 5 B | bl B et g

L L L S = e e b o R G e

A2.2.1 Analysis of interferograms without tilt

In the sabsence of all other types of devistion, sagitta error causes an
interference patiern having concentric, eircular fringes. The radii of the fringes
increase with the square root of the fringe number, counting from the centre of
the fringe pattern.

if gmall amounts of esymmetric deviations are present, the circles d'is..cr't irnto
ovals, as shown in fig. AZ.1. If the surface under test is concave with.' respect
to the reference surface, then® the fringes: will move towards the centre’of the
fringe pattern. If the reverse is true. then the surface under test is convex

with r‘espect Lo 'the refar-encu surface. - i D

vr - Tna R 51

If Iarge amounts ef asymmetric dewatmns are pruent the owval fr'll“lge'& may be:
broken Into apprummately hyperholu: fringes, . as shown in fig: A2.2:% Invthist
case, when the surface under test is moved slightly towards the interferometric
-reference surface, some of the fringes will_move towerds th! I:Eﬂtre af the fr-mge
pattern and some will move away from the centres=:® = i G '

To estimate the amount of sagitta errer and irregularity in a test surface, let m
and m‘ be thesnumbers of fringe spacings seen in the fringe pattern. counted
fram the centre ta the edge. in the direction which give the largest and smallest’
numbers-of fringes:1!. In 'the:case nf n-.ral fr'1ng|35, the sagltta err‘nr Iz given I:ul,r--
the average uﬁ m and m'zs that R e BT : o e S e

opme F..': eE:

S "* iy :Azw-

- ik T Ed 3 *ﬁ;. - b 2 ’?‘{‘
Usuaﬂy, these e d]recnn::n_. are ur1ented .a.[' EH} degreelt;‘@ne .am-cvi:hlau‘ﬂ’u'i %’“E"

th1§?'“neadnnt h& the? caseﬂ#w e R i s e
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In this case the irregularity is equal to the absslute vaslue of the difference of
the fringe counts m and m':

lrregularity [oval fringes! = |m - m'| [AZ.2]

In fig. AZ.71. the values of m and m' are 1 @nd 3 fringe spacings; therefore, the
. sagitta error is (3+1)/2 = 2 fringe spacings and the irregularity is [|3-1] =
2 fringe spacings.

/ 3,0 fringe i
! spacings |

1,0 fringe _¢ % g,
-’_j | spacing

- tm')

Figure AZ.1 Example showing 2 fringe
spacings of ssgitta error and 2 fringe
spacings of irregularity {Evaluation
in subclause A2.2.1]

' i £ 3 e = i A

In the ease of hyperbolic fringes, the sagitta error is E;quai 2 AR T T
; v .
Sagitta error (hyperbolic fringes) = |mT"-‘-I e b g
and the irregularity is given by: oy e e g wploEy
Irregularity (hyperbdlic fringes) = m + m' [AZ.4})
- i .
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25 fr:nge n
Er:la::lngs

@

inge i

r-'li—-___

5 F:_al:.L r‘I'CI‘S

Figure A2.2  Example showing 0.5 fringe
spacings of sagitta error and & fringe 4
spac'rngs of irregularity. [Evaluatién
in subclause A2.2:1) '

e e SEE s B =

In fig. AZ.2. the values of m and m' are 2,5 and 1,5 fringe spacings, respecti-
vely. =o the sagitta error is 2.5 - 1.5|/2 = D.5 frings spacings, and the irre-
gularity is 2.5 + 1,5 = & fringe spacings. .

A2.2.2 Anzlysis of fringe pattern with tilt

This methed requires the fringes te be abserved twice, with the tilt between the
surface under test and the referen:e gu_rfgce adjusted so that the fringes are
oriented in two different directions. It is necessary that the adjustment of the

tilt be made without changing the dlstam:e betwssn the surface under test and - %
the reference surface. ! : et S

When the surface under test it tilted with respect to the reference surfacs, the i
fringes appear as in fig. A2.3. If only sagitta error is present, then the fringes ]
 8ppear as parts ef concentric circles.. The radii of the fringes increase with the

fringe number. counting from the apparent centre of the fringe pattern. If other

surfzce deviation types are alse present, the fringes are not parts of concentric

circles,
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m
u

Wi

L]

m=h/ s
q -

mation

motian

Figure A2.3 rExample showing 0.4 fringe spacings of sagitla
error and 1,8 fringe spacings of irregularity . with the
refarence surface oriented in two directions [Evaluation ¢ ..
in subclause AZ.2.2). - dr S : e
The direction af motion of the fringes when the surface under
test j5 moved towards the reference is indigated.

e e el B 5 7

S

I

To estimate the sagitta error and the irregularity, it is necessary to estimate the
curvature of the surface in the cross-section parsllel to the fringes, for the two
directions of tilt which give the maximum and minimum ameunts of curvaturs (fig.
A2.3(a) and Ib}). In each case. the curvature m is equal to the curvature h of

the fringe closest to the centre of tﬁv.;._'i_r_{tfe"r;fé_r_‘pg:rféfn}' divided by the spacing s of
the fringes, which is also measured as close as possible to the centre of the test

:..)'area. b e

In addition, it is necessary to note [for both directions of the tilt) the direction

af metion’ of the fringes” when the
the reference SUrfase 302 frit roms AFossia :

T - - [N B T T Y - e -

If the fringes in both ‘cases move. towards the

surface: under test is moved slightly towards

‘apparent centre of eurvature of

the fringes. or If the fringes in both cases move away from the apparent centre.
then the sagitts errer exceeds the irregularity, and Egs.(A2.1]) and [AZ2.2]) =hall
be used to estimate the sagitta errér and the irregularity, respectively. In this
case, if tha motion of the fringes is towards the spparent fringe centre, then the
surface under’ test is concave with respect to the reference surface. Otherwise,

the surface is conwvex with respect to the reference surface.
e e S oS S Tl TS T oy g DS ) L e et R R T
R B R L SRS P R L 1) T e g R e T 2

If one- set ‘of fringes moves tewards” its ‘apparent centre,-and the other. frifges.

pattern moves:awdy ‘from’ its apparent centrs, then the irregularitysexceeds the =

- sagitta error;and"Egs. (A2:3) and (A2.4)7shall be used ‘to” estimate the' smounts;.
of sagitta ‘arror and irrecularity.’ If’ the set’of frirnges with the |arger: curvature:
4 - - 5 = ot ol

e

s Cmovess tawardssits. apparent.centre... then. the: surface; is; ncayve
o o B T ) FEe T - S et b AR o

e
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rrspect to the reference surface: otherwise. it iz convex with respect to tha
referance surface.

In fig. AZ.3[a), the curvature h is approximately 1,3 times the fringe spacing s,
som = 1,3, In fig. AZ.3{b}, the curvature h' is one-half the fringe spacing s'.
sa m' = 0,5, The directions of motion shawn in the figure indicate that
Egs.i42.3) and (AZ.4) are to be applied, -from which the walues stated in the
figure caption result. ;

v A2L2.3 Unusual forms of irregularity

It is possible that the form deviation of a surface be a maximum at some point
inside the test area, rather than at the edge. When testing surfaces with no tilt
between the interferometric reference surfsce snd the surface under test, this 1
leads to closed fringes which may not be esncentric with the centre of the test
area, as shown in fig. AZ.4. In ceses such as this, it i neces=ary to note which
fringes move away from the centre and which towsrds the centre when the
surface is moved .towsrds the reference surface. Those which move towards the
centre may be regarded as “positive", and the others as "negative™,

et

\

Figure A2.3  Example of an unusual fringe
pattern, showing the direction of motion of

[ “the fringes, when the surface under test is -

moved towards the reference surface. |Ewvalua=-

tion in subclause A2.2.3)

I ~ i e T o o ) -7

: i S Hav i sha T ]
The sagitta error is r_fetermmed accur‘dlng to Eqg. EF'-E 1). where m and m' repres= :
zant the cumulative numbers of fringes measured- in twa represantive r;]|rec:tier'-s
In the vertical cross-section of fig. AZ.4, there are 4 fringe Intervals in, the & i

. negative direction.: followed by 4 fringe intervals |n the positive d:rectmn. g:wng

" & wvalue: ofi zero: far m: In the horizontal d:rec.;mn,- there are 2. negaﬂue am:i ; s 1
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pusitive fringe intervals, again giving m' = zero. According to Egq.(AZ.1). the
saqgitta error is: (0 + D)z =

The irregularity is determined by finding the highest and lowest departures from
the thearetical expected fringe pattern, which is that the fringss are concentric

3 circles with radii increasing as the sguare reoot of the fringe number. The irre-
gularity is the sum of the absolute values of the highest and lowest departures
from the pattern, messured in fringe intervals. For the pattern of fig. A2.4, the

; saqitta error is zaro, So the theoretical expected fringe pattern has no fringes.
The lowest departure from this is -4 fringe intervals. st the centres of the twe

e outer oval pattarns. and the highest departure from this is zero. Therefore. the
irregularity s j0] + |-#] = & fringe intervals.

The znalysis of fringe patterns is treated mere fully in many textbooks, such as -
Reference [AZ.1]. ;

A2.2.4 Non-circular test areas

ﬁ.ccnrdmg te the definition of sagltta Err"Dr' in subc!ause 4.3.1 the =agitta error is
based on. the sphenta] surface whtr.h best apprux:mates the surface wunder test.
When uslng visual analysis methods, the approximating sphere is chosen so that
the irregularity [which is the difference between the approximating sphere and
the surface under test) i= evenly distributed around the boundary of the-test
area, This reguires that sagitta error and irregularicy be evalusted by a method
similar to that described in subclause AZ2.2, except thzt the caleulations take inte
account the dimensions of the test ares in the twe cress-sections in which m and

! are-measured.

m
For naon- c|r1:|.:|ar test areas,. the ! ﬂent'"e t:uf 'ihl': test area refers to its centroid
l_“a:en'r.r*e-ui'-gra'-.rlty“]_. and its "radius" 45 equaﬂ to’ 'Lha distance from the centre |
ta the mast distant point in the test area. i :
L )] {..- L
J The cross-sectionzl r.:urvatures m- and m' are determined in the same way as in
T subclause AZ.2, using the desrmptmn of the case with or without tilt, as appro-
priate.:The directions aleng. which m and m' are determined are given by the
symmetr-,r ‘of the surface fnr—m errnr- these d:rectlcns are not necessarlly rELated
to the shape of the test ar‘ea :
Let m and m' be the cross-sactional curvatures in the two directions of symme-
try, from the centra to the edge of the test area, as shown in fig. AZ.5.
*  Let a be the distance frem the 'I:EI':I’CJ"E ta the edge of the test area in the’
direction along which the curvature m is measured. Similarly, let b be the
distance along: which the curvature m' is. m&asur&d Let R be the radius of the
test area,. as defined above, .

T IR e S P

r Bt
o
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T
La

m = 5.5 fringe intervals
=

m' = 0.5 frings
intervals
b = 22 mm
i)
rui
Figure A2.5 Example of 3 non-circular test ares, showing =]
| 5.2 fringe spacings of sagitta error and 3.6 fringe spacings

of irregularity. [Evaluation in subclausa AZ.2.4)

In the case of elliptical Frmges,, the sagitta error and the irregularity are deter-

‘mined by: .
Sagi : _ Rilm+m) g
agitta error (oval fringes) = =L [AZ.5) Oy
; G2t Rt
s L e T e P
|1':!'E{_I__.U|Elr"lt':," [oval f.r'll'lg?ﬁ.l;:. = 32 131 + 7). ; [AZ.8) ;

In fig. AZ. 5. the wvalues nf m and m' are 5 5 and U 5 fr|nge 5pac|ng5 measured
over distances of 32 and 22 mm ree; pactively. The radius of the test area is

©+ 36 mm. The gagitia error is found from Eq.[AZ.5) ta be 5,2 fﬂnge spacings and
the irregularity Is fﬂ!.:ll'ld from Eq [A2.8) to E:e 3 ﬁ fringe’ spacings.
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: part 3 page IZ
."llllrI
4
In the case of hyperbolic fringes, the sagitta errar and irregularity are to be
found by:
) : : | Eidee m] =
Sagitta error [hyperbolic fringes] = St 4 Bt [A2.7)
1 Fooy ey
Irregularity |hyperbalic fr"lnggs] = - :;- [laaznl bl]b - bR
'

|f there is tilt betweesn the interferemstric reference susrface and the surface

under test, then it is necessary to note [for both directions of the tilt] the

direction of motion of the fringez when the surface under test is mowved slightly
3 tawards reference surface.

If the fringes in both cases mowve towsrds the apparent centre of the fringe pat-
“ tern, or if the frlnges in both cases move away from the apparent centre of the
_ fringe” pattern; then’ the sagitta error exceeds the’ irregularity, and Egs.[A2.5)

and [AZ.6) shall be used to estimate the sagitta error and the irregularity.

. ' 5

If cne set of fringes meowves towards it apparent centre, and the other fringe

pattern moves awsy from its apparent centre. then' the irregularity exceads the

gagitta error. and Eqz.(AZ.7) and [AZ.8) shall be used to estimate the amounts
of sagitta error and irregularity.

AZ.3 Rotationally symmetric irregularity

The estimation of this deviation by visual metheds is difficuit if large amounts of
other types of surface form deviation are present. For this reason, digital
J methods of lntEl‘F&ngrEm analysis are preferred.
If no tilt is prasant hetwean the surface under test and the refer‘ente surface,
the fringes appear as concentric circles, but their radii do not increase with the
square root of the frmge number, as would be the case with sagitta error. Visual
: ubservathn _uf th_|,r_. property” is difficult and . becomes inaccurate . for. small
deviations:  Therefore, the assessment of this type of surface form deviation is
practical anly in the presence of fiiL.

. In the presence of tih,."tt'a_e fr]ngés are W- or M-shaped, depending on ‘the direc-
tion of the tilt. ln testing the surfacs, the distance between the surface under
B test ‘and the effective reference surface should be adjusted so that the apparent

sagitta errer is zero. This is approximately the case when the two ends and the
centre of the frlnge nearast the centre of the fringe. pattern can be joined by a
straight l|ng, a2 In fug A2.6. In this case, deviations of the surface from a
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2 pert 5  page 23 \
=

| Figure A2.6 Example showing 0.5 fringe
[' spacings of retationally symmetric ;
i irregularity -

| i R SRR e i SREe 4 ¥

sphere are indicated in the fringe pattern by deviations of the fringes from
straight lines.2] The rotationally symmetric irregularity is egqual to the
deviztion h of the fringe from straightness. divided by the fringe spacing s.

.I?.c!'..atiunally symmetric irregularity = = [AzZ.9)

In fig. A2.6. the devistion h of the centrsl frings from straightness is half the
fringe spacing, so the rotaticnally symmetric irregularity is 0.5 fringe spacings.

If it'is not possible to adjust for minimum sagitta error - for instance when using
test glasses - then the central fringe shall be compared not to a straight line. J
hut ta the crrcu!ar are fulmng the twu tnds and the r:entre of the -:entral fringe.

- arls

Tha d&gree ta” wl‘llch the sur‘FatE Furm ‘deviation * is” ‘rotatienally symmetric is
ohserved hy r&peatmg the above test with the tilt adjusted so that the fringes
~are ‘oriented” in ancther direction. The surface form deviation is rotationally
symmstric if the appearance of the frlnges is' the same for all orientations of the
fringes. The rotationally symmetric irregularity is that part of the devistion
which r'EITIEl[I'lE the same fnr all ur:ematmns ::lf the fringes.

F LA
i

REFE"EH:E‘S‘ 3 i e S e L e e i a
- '{.'.-1 i : e o, FE

et TS SRR EFE R TE=TEET & |

[-“-2 1] f"lﬂ-acara, D. ed. Upt1ca1 Ehc-p testmg, 'ﬂl‘l'lej', New York, 19?8
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ANHNEX 3

F'h&'ﬁil&rﬂ relevance of the RMS surface form deviation

This annex is informative in nature: 1t is intended as an aid to understanding
the rms measures of the surface form deviation defined in part & of 1S0O/0LS
10110,

The peak-te=vallay [PV} measures of surface form deviation provided in this part

of 1S0/DIS 10110 are adequate for describing the surface form deviations of most

optical surfaces. Howewer, since these represent only the maximum of deviation of

the surface, the PV quantities de not reflect in any way the fraction of the sur-

face which is close to lor far from) the theoretical desired surface. This may be
A} of importance in cases In which the surface form devizstion is spat:ally lecalised.

The rms measur'&s uf surface form deviation deF‘ned in- part 5 of IE'EHDLS 10110
are affected not only by the maximum deviation of. the surface, but also by the
amount of the surface which devistes from the ideal. Fer. this reason, they . can
ke useful in desr;nbmg the quality of surfaces, part]l:ular'i‘f when the deares of
spatial localization of the surface form deviation iz not known a priaei.

The rms deviation of the wavefront transmitied or refiected by any given surface
can be related In 3 simple manner to the rms surface form deviation of that sur-
face. |This requires consideration of the change in refractive index at the sur-
face, as well as the diameter of the beam as it passas through the surface.)] The
aptical quality of an optical system is closely related to the rms wavefront devia-
tion of a beam passing through the system. This relationship, and the manner in
which the rms wavefront deviation accumulates 2s the wavefront paszes through
the system,. are discussed below.

One useful measure of optical quality of a system is the "Strehl definition". or
“Strehl ratio", which is defined as the ratio of the intensity at the centre |:|f the
image of a point. tn.that which would be achieved by a perfect optical s:,rstem.
: By the central ordinate theorem'!, the Strehl definition is also equal to the total

~ velume under the two-dimensional MTF function of the optical system in question.
i It has been shown®' that for systems having small amounts of wave aberrations
the Strehl definition is given zpproximately by

. ’ T2 &= -2 n? g}l

1) The central ordinate theorem states that the value of a functiop at its ori=
= ___¢_|.1n .15 equal . to. tha wolume under its two- dl:nensu:mal Fourier trﬂ.nsfurm,

i g
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where o is the rms deviation lin wavelengths) of the wavefront from the ideal.®! i
In practice, a Strehl ratio of B0% corresponds to an rms wavefront deviation of
- 0.07 wavelengths. For the case of sagitta error of the surface, this corresponds
to the familiar criterion that the PV deviation not exceed one-quarter wavelength;
however, it should be noted that for the reszons given sbowve. the rms eriterion
is valid for more complex forms of error than is the gquarter-wawve criterion.

" The manner in which the wavefront deviation of an optical system iz related to
the wavefront deviations contributed by the-individual surfaces depends on the
® =xteni to which the contributions are correlsted, For this resson, little can be
said in ganeral about the mannmer in which the surface contributions combine 1o i
farm the total system error; nevertheless, it is ussful to examine the two extrems '
cases given below. :
If the surface form deviation described by a glven type [e.g. irregularity] has
the same shape and orientation for all the surfaces in the system, then the PV
value of that error type is equal-to the algebraic sum [that is. taking the signs j
: inte account) of -the PV values of the individual contributions of that type. This
Is always the case' for sagitta error, althqugh the signs. of the surface mntr;bu-
tions are usually not knewn in adwvance. |For this resson, some assumpt:uns are :
necessary when' computing the tolerance, even when the form of’the erfor i = _ :
known.) Surface form errors described by the error type “irregularity" may have
different orientstions or even different forms for the various surfaces in° the

sysiem.

If the individual surfaces of the optical system contribute wavefront deviations
which are mathematically orthogonzl to one another, then the rms wavefront
deviation for the system iz given by the square root of the sum of the sguares
of the individuzl rms velues. In most casss, it cannot be expected that the con-
tributions of the surfaces are mutually. orthoganal; nevertheless. this: may be a
useful appmmmatmn if the contributions of the surfaces are not expected to be
correlated in any way (for instance, when considering the residual aberrations
after the removal of sagitta error: RMS,). ? .}

Pract:cal cases gEﬂEfa“':f' t'ail between the two extreme cases desc.r':bed abave, £

' = H iy

foi : SeiE sede P
fi =i P £ - . A N TRy i

3) Mere pracisaly, "o is’ the variance "of the wavefront, nat its rms deviation; .
however, thare’” fs: neglicnble difference butweﬂn t")a two, since t}m laast—-". i
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